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Abstract
This paper presents a fractional Dirac equation and its solution. The fractional
Dirac equation may be obtained using a fractional variational principle and
a fractional Klein–Gordon equation; both methods are considered here. We
extend the variational formulations for fractional discrete systems to fractional
field systems defined in terms of Caputo derivatives. By applying the variational
principle to a fractional action S, we obtain the fractional Euler–Lagrange
equations of motion. We present a Lagrangian and a Hamiltonian for the
fractional Dirac equation of order α. We also use a fractional Klein–Gordon
equation to obtain the fractional Dirac equation which is the same as that
obtained using the fractional variational principle. Eigensolutions of this
equation are presented which follow the same approach as that for the solution
of the standard Dirac equation. We also provide expressions for the path integral
quantization for the fractional Dirac field which, in the limit α → 1, approaches
to the path integral for the regular Dirac field. It is hoped that the fractional
Dirac equation and the path integral quantization of the fractional field will
allow further development of fractional relativistic quantum mechanics.

PACS numbers: 45.10.Hj, 45.20.Jj

1. Introduction

Fractional calculus is an emerging field and during the last few decades some important
contributions were developed in science, engineering, applied mathematics, economics and
biomechanics. In recent years, considerable progress has been made in the area of fractional
derivatives and, in more general, in the area of fractional calculus. A complete discussion of
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this subject will take us too far from our main goal here [1–6]. Particularly, the fractional
and anomalous dynamics has experienced an upswing during the last few years and has been
forged into a mature framework in the theory of stochastic processes [7]. The physical and
geometrical meaning of the fractional derivatives has been investigated by several authors
[8, 9]. The physical interpretation of the Stieltjes integral, namely the Stieltjes integral can
be interpreted as the real distance passed by a moving object, for which we have recorded
correct values of speed and the incorrect values of time. Within this physical interpretation
the Riemann–Liouville and Caputo have the same interpretation and therefore can be used
successfully, for example,within fractional variational principles [10–17]. We mention that
this interpretation allows us to use fractional derivatives inside of the fractional action. On the
other hand, by making use of examples from viscoelasticity, it was shown that it is possible to
attribute physical meaning to initial conditions within Riemann–Liouville fractional derivatives
[18]. The fractional operators are particular cases of non-local operators and during the last
decade several interesting research was done in this direction [19–25].

The Dirac equation is a relativistic quantum mechanical wave equation which provides a
description of elementary spin- 1

2 particles, such as electrons, consistent with both the principles
of quantum mechanics and special theory of relativity [26]. One of the approaches of obtaining
the Dirac equation is to take the square root of the operators appearing in the Klein–Gordon
equation. The algebra of the coefficients in the proposed square root suggests that these
coefficients should be 4 by 4 matrices. One of the major successes of this equation is that it
predicted the existence of a positron (an antiparticle of an electron) before it was discovered
[26].

Following the above progress, one can naturally ask: ‘Can we take other roots of the
Dirac and the Klein–Gordon equations to describe new systems’. This is exactly what was
done in [27] and [28]. Ketov and Prager [27] examine the square root of the Dirac equation,
and Raspini [28] proposed a fractional Dirac equation (FDE) of order 2/3 which is essentially
a cube root of the Klein–Gordon equation (‘What is a fractional Dirac equation?’ will be
discussed shortly). The algebra of the coefficients in the Raspini’s formulation suggests that
these coefficients should be 9 by 9 matrices. Raspini [28] also provides simple solutions and
the spinorial properties of the proposed FDE.

Raspini’s formulation could be extended to derive FDEs of order m/n, where m and n,
m � n, are two arbitrary integers. However, the approach suggests that for large n, the size
of the matrices arising in the formulation would also be large. Furthermore, in Raspini’s
formulation, what would be the root of arbitrary order of the Klein–Gordon equation is not
clear. Therefore, using Raspini’s formulation, it may not be possible to obtain the Dirac’s
equations containing spacetime derivatives of arbitrary order. In addition, the Raspini’s
formulation does not provide Lagrangians and Hamiltonian for the Dirac equation of order
2/3. Accordingly, it has not been extended in the direction that requires Lagrangians and
Hamiltonian of a system.

The first problem could be avoided by considering a fractional Klein–Gordon equation
as the starting point for the FDEs. This approach to derive an FDE will be considered later
in this paper. As discussed later, it would also reduce the size of the matrices arising in the
formulation. To address the second problem, one could develop fractional Lagrangians and
Hamiltonians and use a fractional variational calculus to derive the fractional Dirac equation.
This would be considered in the next three sections of this paper.

At this stage, one may ask, ‘What are fractional Dirac and Klein–Gordon equations?’
A fractional Dirac (Klein–Gordon) equation could be thought of as a Dirac (Klein–Gordon)
equation in which regular space and time derivatives have been replaced by fractional space
and time derivatives.
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One may also ask, ‘What is the fractional variational calculus?’ To address this, we first
define a variational problem. A variational problem is a problem that requires finding the
extremum of a functional which may be subjected to algebraic and/or dynamic constraints. If
either the functional and/or the algebraic/dynamic constraint(s) contain at least one fractional
derivative term, then the problem is called a fractional variational problem. The fractional
variational calculus is an extension of the ordinary variational calculus that deals with finding
the solution of a fractional variational problem [10–17]. As pointed out above, we will define
fractional Lagrangians and Hamiltonians, and use fractional variational calculus to derive the
fractional Dirac equation and to address the issue of the quantization of the fractional Dirac’s
field.

The plan of this paper is as follows: In section 2, we present the Euler–Lagrange
equations for a fractional field. Section 3 presents the Hamiltonian formulations of fields
for three different cases discussed later. In section 4, we define a fractional Lagrangian density
function and use the theories developed in sections 2 and 3 to derive the fractional Dirac
equation and the fractional Hamiltonian equations for a fractional Dirac field. In section 5,
we derive the fractional Dirac equation from a fractional Klein–Gordon equation, and show
that these equations are the same as those derived in section 4. This section also presents
the eigensolutions of the fractional Dirac equation. In section 6 we define path integral
quantization of fractional Dirac’s field with the hope that it will allow further development of
the fractional quantum mechanics. Finally, section 7 presents conclusions.

At this stage, it should be pointed out that several definitions have been proposed of a
fractional derivative; among those the Riemann–Liouville and Caputo fractional derivatives
are the most popular. The differential equations defined in terms of Riemann–Liouville
derivatives require fractional initial conditions whereas the differential equations defined in
terms of Caputo derivatives require regular boundary conditions. For this reason, the Caputo
fractional derivatives are popular among scientists and engineers. Accordingly, we shall also
develop our formulations in terms of Caputo fractional derivatives. However, most of the
approach will also be applicable to problems defined using other derivatives.

2. Lagrangian formulation of field systems with Caputo fractional derivatives

Consider a function f depending on n variables, x1, . . . , xn defined over the domain
� = [a1, b1] × · · · × [an, bn]. Following the convention used in physics, we defined the
left and the right partial Riemann–Liouville and Caputo fractional derivatives of order αk ,
0 < αk < 1 with respect to xk as(

+∂
α
k f

)
(x) = 1

�(1 − αk)
∂xk

∫ xk

ak

f (x1, . . . , xk−1, u, xk+1, . . . , xn)

(xk − u)αk
du, (1)

(
−∂α

k f
)
(x) = −1

�(1 − αk)
∂xk

∫ bk

xk

f (x1, . . . , xk−1, u, xk+1, . . . , xn)

(u − xk)αk
du, (2)

(
C
+ ∂α

k f
)
(x) = 1

�(1 − αk)

∫ xk

ak

∂uf (x1, . . . , xk−1, u, xk+1, . . . , xn)

(xk − u)αk
du (3)

and (
C
−∂α

k f
)
(x) = −1

�(1 − αk)

∫ bk

xk

∂uf (x1, . . . , xk−1, u, xk+1, . . . , xn)

(u − xk)αk
du, (4)

where ∂xkg is the partial derivatives of g with respect to the variable xk. Here, in +∂
α
k , −∂α

k ,
C
+ ∂α

k and C
−∂α

k , the meaning of various subscripts and superscripts need to be made clear.
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The subscript k and the superscript α indicate that the derivative is taken with respect to the
variable xk and it is of order αk (note that we write only α for αk , and the subscript k to ∂

also represents the subscript to α), the subscripts + and − prior to the symbol ∂ represent the
left and the right fractional derivatives, respectively, and accordingly the limits of integrations
are taken as [ak, xk] and [xk, bk]. Further, no superscript and the superscript C prior to the
symbol ∂ represent the Riemann–Liouville fractional derivative and the Caputo fractional
derivative, respectively. Superscript α is necessary here as a reminder that the operator ∂α

represents a fractional derivative. When α is equal to 1, the superscript α can be neglected.
Although, our aim in this section is to present the action principle for systems defined in terms
of Caputo fractional derivatives, the Riemann–Liouville fractional derivatives are also defined
here because they naturally arise in the formulation.

To develop the action principle for field systems described in terms of fractional
derivatives, define a functional S(φ) as

S(φ) =
∫

L
(
φ(xk),

(
C
+ ∂α

k

)
φ(xk),

(
C
−∂

β

k

)
φ(xk), xk

)
(dxk), (5)

where L
(
φ(xk),

(
C
+ ∂α

k

)
φ(xk),

(
C
−∂

β

k

)
φ(xk), xk

)
is a Lagrangian density function. Here we

have used Goldstein’s [29] notation. Accordingly, xk represents n variables x1 to xn,
φ(xk) ≡ φ(x1, . . . , x1), L

(∗, C
+ ∂α

k , ∗, ∗) ≡ L
(∗, C

+ ∂α
1 , . . . , C

+ ∂α
n , ∗, ∗)

, (dxk) ≡ dx1 · · · dxn,
and the integration is taken over the entire domain �. Other terms are defined accordingly.

To find the necessary condition for extremum of the action functional defined above,
consider a one-parameter family of possible functions φ(xk; ε) as follows:

φ(xk; ε) = φ(xk; 0) + εη(xk), (6)

where φ(xk; 0) is the correct function which satisfies the Hamilton’s principle for the fractional
system, η(xk) is a well-behaved function that vanishes at the endpoints and ε is an arbitrary
parameter. Note that S[φ(xk; ε)] is extremum at ε = 0. Substituting equation (6) into equation
(5), differentiating the resulting expression with respect to ε, and then setting ε to 0, we obtain

dS

dε

∣∣∣∣
ε=0

=
∫ [

∂L
∂φ

η +
n∑

k=1

∂L
∂
(
C
+ ∂α

k φ
)(

C
+ ∂α

k η
)

+
n∑

k=1

∂L
∂
(
C−∂

β

k φ
)(

C
−∂

β

k η
)]

(dxk) = 0. (7)

Finally, using the formula for integration by part [11], the fact that η(xk) is zero at the boundary,
and a lemma from the calculus of variations, we obtain

∂L
∂φ

+
n∑

k=1

−∂α
k

∂L
∂
(
C
+ ∂α

k φ
) +

n∑
k=1

+∂
β

k

∂L
∂
(
C−∂

β

k φ
) = 0. (8)

Equation (8) is the Euler–Lagrange equation for the fractional field system. For αk, βk → 1,
equation (8) gives the usual Euler–Lagrange equations for classical fields.

Here we would like to address the following. (1) We have formulated the problem in terms
of Caputo derivatives. The same approach can be used to find the Euler–Lagrange equations for
functionals defined in terms of Riemann–Liouville or mixed (Caputo and Riemann–Liouville)
derivatives. (2) The presence of right/left Caputo/Riemann–Liouville derivatives leads to
left/right Riemann–Liouville/Caputo derivatives in the Euler–Lagrange equations. (3) In the
formulation so far, φ was treated as a scalar function. The above equations are equally valid
when φ is a vector function.

We now present Hamiltonian formulations for fractional field systems.
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3. Hamiltonian formulation of fields within Caputo derivatives

Like discrete systems and integer-order fields, it is possible to develop Hamiltonian
formulations for fields defined in terms of fractional derivatives. From mathematical point
of view, a Hamiltonian formulation is nothing but a set of Legendre transformations which
replaces the generalized velocities (or the generalized velocity densities, GVDs) from the
Lagrangian (or the Lagrangian density) with generalized momenta (or momentum densities)5.
The transformed Lagrangian (or the Lagrangian density) obtained through this process is
called the Hamiltonian (or the Hamiltonian density). Since our discussion is limited to fields,
we shall consider only field variables. The change of variables proposed above could be for
the complete set or a partial set of generalized velocity densities. Standard Legendre approach
cannot be used for such changes if the Lagrangian density function is a linear function of
the generalized velocity densities. However, for this last case, using a Lagrange multiplier
technique, it is still possible to develop the Hamiltonian density functions which give correct
equations of motion.

In this section, we develop Hamiltonian formulations for the three cases (namely, the
change of partial and complete set of GVDs and the change of GVDs when the Lagrangian
density function is a linear function of the GVDs) for fractional fields. Although we develop
the formulations for fields defined in terms of Caputo fractional derivatives, the approach is
applicable to fields defined in terms of other fractional derivatives. In all cases considered
here, we define the fractional canonical momentum densities (FCMDs) παk

and πβk
as

παk
= ∂L

∂
(
C
+ ∂α

k φ
) , πβk

= ∂L
∂
(
C−∂

β

k φ
) . (9)

Thus, in terms of παk
and πβk

, the Euler–Lagrange equation is given as

∂L
∂φ

+
n∑

k=1

−∂α
k παk

+
n∑

k=1

+∂
β

k πβk
= 0. (10)

We now give the Hamiltonian formulations for the three cases.

Case 1. Change of a partial set of GVDs. Let us assume that we want to replace GVDs
C
+ ∂α

k φ with the FCMD παk
(k = 1, . . . , nl < n) and the GVDs C

−∂
β

k φ with the FCMDs πβk

(k = 1, . . . , nr < n). Before we proceed further, it should be pointed out that C
+ ∂α

k φ and C
−∂

β

k φ

to be replaced with παk
and πβk

, respectively, need not be in sequence. This assumption was
made for simplicity. For this case, with define the Hamiltonian density function as

H =
nl∑

k=1

παk

(
C
+ ∂α

k φ
)

+
nl∑

k=1

πβk

(
C
−∂

β

k φ
) − L, (11)

where H is now a function of φ; παk
(k = 1, . . . , nl); C

+ ∂α
k φ (k = nl + 1, . . . , n); πβk

(k = 1, . . . , nr ); C
−∂α

k φ (k = nr + 1, . . . , n); and xk, k = 1, . . . , n. The total differential of
equation (11) is given as

dH =
nl∑

k=1

(
dπαk

(
C
+ ∂α

k φ
)

+ παk
d
(
C
+ ∂α

k φ
))

+
nr∑

k=1

(
dπβk

(
C
−∂

β

k φ
)

+ πβk
d
(
C
−∂

β

k φ
))

−
n∑

k=1

(
∂L
∂xk

dxk +
∂L

∂
(
C
+ ∂α

k φ
) d

(
C
+ ∂α

k φ
)

+
∂L

∂
(
C−∂

β

k φ
) d

(
C
−∂

β

k φ
)) − ∂L

∂φ
dφ. (12)

5 The terms generalized velocity, generalized velocity density, canonical momentum density, etc are used in extended
sense.
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Using equations (9) and (10), equation (12) reduces to

dH =
nl∑

k=1

dπαk

(
C
+ ∂α

k φ
)

+
nr∑

k=1

dπβk

(
C
−∂

β

k φ
) −

n∑
k=1

∂L
∂xk

dxk

−
n∑

k=n1+1

∂L
∂
(
C
+ ∂α

k φ
) d

(
C
+ ∂α

k φ
) −

n∑
k=nr +1

∂L
∂
(
C−∂

β

k φ
) d

(
C
−∂

β

k φ
) − ∂L

∂φ
dφ. (13)

Finally, after some manipulations, we obtain

∂H
∂
(
C
+ ∂α

k φ
) = − ∂L

∂
(
C
+ ∂α

k φ
) , k = nl + 1, . . . , n,

(14)
∂H

∂
(
C−∂

β

k φ
) = − ∂L

∂
(
C−∂

β

k φ
) , k = nr + 1, . . . , n

and
∂H
∂παk

= (
C
+ ∂α

k φ
)
, k = 1, . . . , nl; ∂H

∂πβk

= (
C
−∂

β

k φ
)
, k = 1, . . . , nr ,

∂H
∂xk

= − ∂L
∂xk

, k = 1, . . . , n, (15)

∂H
∂φ

=
nl∑

k=1

−∂α
k παk

+
nr∑

k=1

+∂
β

k πβk
−

n∑
k=nl+1

−∂α
k

∂H
∂
(
C
+ ∂α

k φ
) −

n∑
k=nr +1

+∂
β

k

∂H
∂
(
C−∂

β

k φ
) .

Equations (15) are called the fractional Hamilton equations of motion. Using equations (9),
(11) and (14), it can be demonstrated that equations (15) lead to equation (8) (i.e. the correct
Euler–Lagrange equation of motion).

Case 2. Change of complete set of GVDs. The Hamiltonian formulation, where the complete
set of GVDs is replaced with the complete set of FCMDs, can be obtained from the above
formulation by replacing both nl and nr with n. Thus, for this case, using equation (11) the
Hamiltonian density function is given as

H =
n∑

k=1

(
παk

(
C
+ ∂α

k φ
)

+ πβk

(
C
−∂

β

k φ
)) − L (16)

and using equation (15), the Hamiltonian equations of motion are given as

∂H
∂παk

= C
+ ∂α

k φ,
∂H
∂πβk

= C
−∂

β

k φ,
∂H
∂xk

= − ∂L
∂xk

,

(17)
∂H
∂φ

=
n∑

k=1

(
−∂α

k παk
+ +∂

β

k πβk

)
, k = 1, . . . , n.

Case 3. Change of GVDs when the Lagrangian density function is a linear function of the
GVDs. The forgoing approach cannot be used to obtain Hamiltonian density function if the
Lagrangian density function is a linear function of the GVDs. To demonstrate this, consider a
Lagrangian density function L(φ, C

+ ∂α
k φ, φ̄) as

L
(
φ, C

+ ∂α
k φ, C

−∂
β

k φ, φ̄
) = φ̄

n∑
k=1

(
ak

(
C
+ ∂α

k φ
)

+ bk

(
C
−∂

β

k φ
))

+ cφ̄φ, (18)

where c, ak, bk (k = 1, . . . , n), are some constants and φ̄ ≡ φ̄(xk) is some function of xk

(k = 1, . . . , n). As we shall see, such Lagrangian density functions arise in our Dirac field

6
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formulation presented in the next section. For this case, the first Euler–Lagrange equation is
given as

∂L
∂φ̄

=
n∑

k=1

(
ak

(
C
+ ∂α

k φ
)

+ bk

(
C
−∂

β

k φ
))

+ cφ = 0, (19)

the FCMDs are given as

παk
= ∂L

∂C
+ ∂α

k φ
= φ̄ak, πβk

= ∂L
∂C−∂

β

k φ
= φ̄bk, k = 1, . . . , n (20)

and the Hamiltonian density function is given as

H =
n∑

k=1

(
παk

(
C
+ ∂α

k φ
)

+ πβk

(
C
−∂

β

k φ
)) − L = −cφ̄φ. (21)

It could be verified that this Hamiltonian does not lead to the correct Euler–Lagrange equation
of motion.

To overcome this problem, we treat the definition of the FCMDs as constraints and add
these constraints to the Hamiltonian density function using Lagrange multiplier to obtain the
new Hamiltonian density function. It can be demonstrated that a new Hamiltonian density
function gives the correct equation of motion. To accomplish this, consider the Lagrangian
density function L defined by equation (18) and assume that we want to replace the GVD
C
+ ∂α

1 φ with the corresponding FCMD. In this case, the FCMD corresponding to the GVD C
+ ∂α

1 φ

is given as

πα1 = ∂L
∂
(
C
+ ∂α

1 φ
) = φ̄a1, (22)

which leads to the constraints as

πα1 − φ̄a1 = 0 (23)

and the Hamiltonian as

H = −φ̄

n∑
k=2

ak

(
C
+ ∂α

k φ
) − φ̄

n∑
k=1

bk

(
C
−∂

β

k φ
) − cφ̄φ + λ(πα1 − φ̄a1), (24)

where λ is a Lagrange multiplier.
Here only one GVD has been replaced with one FCMD and therefore, we must consider

the formulation presented in case 1 above. Thus, using equations (15) and (24), we obtain

∂H
∂φ̄

= −
n∑

k=2

ak

(
C
+ ∂α

k φ
) −

n∑
k=1

bk

(
C
−∂

β

k φ
) − cφ − λa1 = 0,

(25)
C
+ ∂α

1 φ = ∂H
∂πα1

= λ,

which immediately lead to equation (19), i.e. the correct equation of motion. Following the
same approach, it can be demonstrated that the approach works when two or more GVDs are
replaced with the corresponding FCMD.

In the next section, the formulations of this and the previous section will be used to
develop a Lagrangian and a Hamiltonian of a fractional Dirac field and the fractional Dirac
equations.

7
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4. Dirac’s field with Caputo fractional derivatives

We will now apply the Lagrangian and the Hamiltonian formulations developed in sections 2
and 3 to derive fractional Dirac equation for a relativistic particle. We shall limit our discussion
to four-dimensional system (the first three for space, x1, x2 and x3, and the fourth for time,
x4 = it , where i is the imaginary unit. Note that we are considering the units that take the
speed of light equal to 1). The Greek indices μ, λ, ν, etc will range from 1 to 4, the Roman
indices i, j , k, etc will range from 1 to 3 and, unless specifically stated, the repeated indices
will represent summation. Following this convention, we propose the following Lagrangian
density field:

L = mᾱ + āγ μ
(
C
+ ∂α

μ
)

+ b
(
−∂α

μ̄
)
γ μ, (26)

where  is a wavefunction (the bold character  suggests that it could be a vector function; in
the literature, it is also called a spinor), m is the mass of the particle, α (= α1 = α2 = α3 = α4)

is the order of the fractional derivative, γ μ are matrices, ̄ is the adjoint wavefunction, and
a and b are coefficients such that a + b = 1. The dimensions of , ̄ and γ μ depend on the
order of the derivatives and the way the algebra of matrices γ μ is developed. For example,
if the algebra of γ μ is developed by taking the square root of the Klein–Gordon equation,
then the minimum dimensions of γ μ turn out to be 4 by 4. This also applies to fractional
Dirac equations when they are obtained by taking the square root of a fractional Klein–Gordon
equation. On the other hand, as reported by Raspini, if the algebra of γ μ is developed by
taking cube roots of the Klein–Gordon equation, the minimum dimensions of matrices γ μ turn
out to be 9 by 9. For the sake of generality, we shall keep the two terms  and γ μ general and
consider special cases as necessary.

Using equations (8) and (26), the Euler–Lagrange equations for variables ̄ and  are
given as

γ μ
(
C
+ ∂α

μ
)

+ mα = 0 (27)

and (
−∂α

μ̄
)
γ μ + mᾱ = 0. (28)

Equation (27) is the desired fractional Dirac equation and equation (28) is its adjoint form.
For α = 1, we obtain the standard Dirac equation, and for α = 2/3 and assuming that γ μ

are the same as those developed in [28], we obtain the fractional Dirac equation of order 2/3
developed by Raspini. It will be shown in the next section that the fractional Klein–Gordon
equation gives the same fractional Dirac equation as that given in equation (27). Note that a
and b do not appear in equations (27) and (28). This suggests that we can take different values
of a and b to generate a family of Lagrangian density functions each of which would give the
same fractional Dirac equation and its adjoint as long as the condition a + b = 1 is satisfied.

In the discussion to follow, we shall take a = 1 and b = 0. Let us assume that we are
interested in time evolution only, and we want to develop the corresponding Hamiltonian. For
this case, the corresponding canonical momenta are given as

π4 = ∂L
∂
(
C
+ ∂α

4 
) = ̄γ 4, π̄4 = ∂L

∂
(
C
+ ∂α

4 ̄
) = 0. (29)

Using the Lagrange multiplier technique discussed in section 3, the fractional Hamiltonian
density function for this system is given by

Hf = −̄
(
γ k

(
C
+ ∂α

k 
)

+ mα
)

+
(
π4 − ̄γ 4

)
λ + λ̄π̄4, (30)

where λ and λ̄ are the Lagrange multipliers.

8
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Using equations (15) and (30), the fractional Hamilton equations are given as
∂Hf

∂̄
= −(

γ k
(
C
+ ∂α

k 
)

+ mα
) − γ 4λ = 0,

∂Hf

∂π4
= λ = C

+ ∂α
4  (31)

and
∂Hf

∂
= −̄mα = −∂α

4 π4 + −∂α
k ̄γk. (32)

It could be verified that equations (31) and (32) led to equations (27) and (28). Thus, the
proposed Hamiltonian density function leads to the correct set of differential equations.

In the next section, we derive the FDE from the fractional Klein–Gordon, find the
eigensolutions of the FDE and discuss the resulting consequences.

5. Fractional Klein–Gordon and Dirac equations, and the solutions of the FDE

In this section we propose a fractional Klein–Gordon equation (FKGE) as[(
C
+ ∂α

μ

)(
C
+ ∂α

μ

) − m2α
]
(x, t) = 0. (33)

Here we use Einstein’s summation rule for μ only. Note that here we have defined the
fractional derivative in the Caputo sense. This allows us to find solutions of some fractional
differential equations in closed form. Further, for α = 1, equation (33) reduces to the standard
Klein–Gordon equation.

The fractional momenta operator pμ
α is defined as

pμ
α = −i

(
C
+ ∂α

μ

)
. (34)

Hence, (33) can be written as[
pμ

α pμ
α + m2α

]
(x, t) = 0. (35)

The fractional Klein–Gordon equation defined by equation (35) is quadratic in the momenta
operator pμ

α . Let us assume that[
iγ μpμ

α + mα
]
(x, t) = 0 (36)

is a solution to equation (35). This equation is called the fractional Dirac equation (FDE) of
order α. To find the algebra of γ μ and the solution of equation (36), let us apply the operator[
iγ μpμ

α − mα
]

to it from left to obtain[− 1
2 (γ μγ ν + γ νγ μ)pμ

α pν
α − m2α

]
(x, t) = 0. (37)

In order to recover
[
pμ

α pμ
α + m2α

]
(x, t) = 0 , we require the following algebra for γ ’s

γ μγ ν + γ νγ μ = 2δμν, (38)

which is the same as that required of γ ’s in the ordinary Dirac equations. Here δμν is the
Kronecker-delta function. Thus, the γ ’s appearing here and those appearing in the ordinary
Dirac equations are the same. The explicit representations of the γ μ are

γ 4 =
(

I 0
0 −I

)
(39)

and

γ k =
(

0 −iσk

iσk 0

)
, (40)

where I is a 2 × 2 identity matrix, σk are the 2 × 2 Pauli matrices defined as

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(41)

9



J. Phys. A: Math. Theor. 43 (2010) 055203 S I Muslih et al

and the wavefunction  is given as

 =

⎛
⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎟⎠. (42)

Using equations (34) and (36), we obtain[
γ μ

(
C
+ ∂α

μ

)
+ mα

]
(x, t) = 0, (43)

which is exactly the same as that given in equation (27). Thus, the approach of taking the root
of Klein–Gordon discussed here and the variational principle approach discussed in section 4
give the same fractional Dirac equations.

Multiply γ 4 to equation (43) from left, separating the time and the spatial parts, and using
the fact that (γ 4)2 = 1, we obtain

−(
C
+ ∂α

4 
) = τ k

(
C
+ ∂α

k 
)

+ γ 4mα, (44)

where τ k = γ 4γ k . Assuming that the method of separation of variables can be applied, we
take (x, t) = ϕ(t)�(x). Separating the time and the space parts and assuming that each is
equal to E, we obtain(

C
+ ∂α

4

)
ϕ(t) = −Eϕ(t) (45)

and (
iτ kpk

α + γ 4mα
)
�(x) = E�(x). (46)

Here we have replaced C
+ ∂α

k with ipk
α (see equation (34)).

To find the solution of equation (45), we assume that ϕ(t = 0) = 1, and then the
time-dependent solution ϕ(t) is given by [3]

ϕ(t) = Eα(−E(it)α), (47)

where Eα is the Mittag–Leffler function defined as

Eα(z) =
∞∑

n=0

(z)n

�(αn + 1)
. (48)

Also, from equation (34), we have

−i
(
C
+ ∂α

k

)
�(x) = pk

α�(x). (49)

Using the separation of variables method once again, and assuming that �(x) =
X1(x1)X2(x2)X3(x3)U , we obtain the fractional differential equations for Xk(xk) (k = 1, 2, 3)
as

−iC+ ∂α
k Xk(xk) = pk

αXk(xk) (k = 1, 2, 3). (50)

Here, no sum is taken over k. Let us assume that Xk(0) = 1 (k = 1, 2, 3). For this case, the
solution of (50) is given as Xk(xk) = Eα

(
ipk

α(xk)
α
)
, k = 1, 2, 3, and accordingly, the solution

for �(x) is given as

�(x) = Eα

(
ip1

α(x1)
α
)
Eα

(
ip2

α(x2)
α
)
Eα

(
ip3

α(x3)
α
)
U, (51)

and the spacetime spinor wavefunction for fractional Dirac equation is given by

f D = Eα(−E(it)α)Eα

(
ip1

α(x1)
α
)
Eα

(
ip2

α(x2)
α
)
Eα

(
ip3

α(x3)
α
)
U, (52)

10
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where U is the spinor wave vector defined as

U =
(

χ

η

)
=

⎛
⎜⎜⎝

χ1

χ2

η1

η2

⎞
⎟⎟⎠. (53)

Now, equation (46) can be written as(
(mα − E)I σ kpk

α

−σ jp
j
α (mα + E)I

)(
χ

η

)
= 0. (54)

For nontrivial solution of equation (54), the determinant of the coefficient matrix must vanish.
This leads to

(mα − E)(mα + E) +
(
σ kpk

α

)(
σ jpj

α

) = 0 (55)

from which we obtain the eigenvalues E
f D
± of the fractional Dirac equation as

E
f D
± = ±

√
p2

α + m2α. (56)

For α = 1, we have the energy eigenvalues for the regular Dirac equation as

ED
± = ±

√
p2 + m2. (57)

Equation (54) can be solved using standard techniques to determine four eigenvectors U
corresponding to the eigenvalues E

f D
± . These vectors are

U+
↑ = N

[
1 0 p3

α

E
f D
+ +mα

p+
α

E
f D
+ +mα

]T

,

U+
↓ = N

[
0 1 p−

α

E
f D
+ +mα

−p3
α

E
f D
+ +mα

]T

,

(58)
U−

↑ = N
[

p3
α

E
f D
− −mα

p+
α

E
f D
− −mα

1 0
]T

,

U−
↓ = N

[
p+

α

E
f D
− −mα

−p3
α

E
f D
− −mα

1 0
]T

,

where p±
α = p1

α ± ip2
α and N is the normalization coefficient such that U ∗T U = 1. Here the

superscript ∗ represents the complex conjugate of the vector. It can be shown that

N =
[

1 +
pk

αpk
α

(|Ef D| + mα)2

]1/2

(59)

and that U+
↑ , U+

↓ , U−
↑ and U−

↓ are orthonormal vectors, and they can be used to find the
complete solution.

6. Path integral quantization of the fractional Dirac equation

The path integral method is an alternative formulation of quantum mechanics and leads us to
the same results obtained by canonical quantization (i.e. the operator formalism of quantum
mechanics). However, for some systems, the canonical method is quite awkward to formulate
and to use. This holds true for quantization of fields with constraints, and the problem of
non-Abelian gauge field theories. The operators are avoided by the use of infinite product of
integrals (path integral), which nowadays is the preferred route to field quantization.

For classical fields φ, the path integral is given by the transition amplitude [30, 31]

K =
∫

Dφ eiS/h̄. (60)

11
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The starting point of the quantization process, in the path integral quantization for field systems,
is to calculate the integrable action function integral S [32] which gives the genuine equations
of motion. For fractional field systems, the action function is given by

S(φ) =
∫

L
(
φ(xk),

(
C
+ ∂α

k

)
φ(xk),

(
C
−∂

β

k

)
φ(xk), xk

)
(dxk). (61)

For the fractional Dirac field, we calculate the functional action as

S =
∫ {

̄
(
γ μ

(
C
+ ∂α

μ
)

+ mα
)}

d4x. (62)

The above formulation leads us to obtain the path integral quantization for the fractional
Dirac field as

K =
∫

d̄ d exp

[
i/h̄

∫ {
̄

(
γ μ

(
C
+ ∂α

μ
)

+ mα
)}

d4x

]
. (63)

The path integral representation (63) is an integration over the canonical field variables ̄ and
. One should notice that as α → 1, we have the path integral quantization for the regular
free Dirac field.

This path integral scheme can be applied for any fractional mechanical system, in the
same sense as that of applying the path integral for Lagrangian systems with integer order
derivatives and this topic will be discussed in a later paper.

7. Conclusions

Fractional derivatives and integrals have the specific property that they contain in the limit
α → 1 the classical ones. As a result the fractional models contain as a limit the classical ones.
This property makes the fractional calculus an important candidate to describe the anomalous
processes. Having this in mind, in this paper, we have presented a fractional Dirac equation.
We derived the fractional Dirac equation using two methods, first using a variational principle
and then by taking the square root of a fractional Klein–Gordon equation. We demonstrated
that both methods give the same fractional Dirac equation. In the process, we extended the
derivation of the usual Euler–Lagrange and Hamilton equations of motion for the classical
field to fields defined using Caputo fractional derivatives. We also presented the eigensolution
of the fractional Dirac equation. We have also presented the path integral quantization for the
fractional Dirac field with a hope that it will allow further development of fractional relativistic
quantum mechanics.
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